

Evaluating Tree Species for Carbon Sequestration at Madrona Marsh

Eknoor Kaur¹, Miriam Taeubel², Molly Daigle³

¹West High School; ²Madrona Marsh Nature Preserve; ³UConn NRCA

Project Motivation & Goals

Key Issue:

Urbanization and industrialization are exponentially increasing CO_2 emissions, contributing to worsening climate change, according to the UN Environment Program. These issues demand nature based solutions that are sustainable.

Solution:

Trees absorb CO_2 and improve air quality through carbon sequestration.

Fig 1. Map of the tree locations at Madrona Marsh, which is located within an urbanized area of Torrance, CA

Goal:

To determine which tree species at Madrona Marsh (Fig. 1) in Torrance, CA are most effective at sequestering carbon and contributing to climate resilience in urban ecosystems.

- **Objective 1:** Investigate the carbon sequestration capacity of four tree species
- **Objective 2:** Examine how tree size and environmental factors, such as proximity to human activity (e.g., gas stations, car washes), influence carbon absorption
- **Objective 3:** Assess the role of these tree species in mitigating climate change

Project Outcomes

Tree Size & Sequestration:

Larger trees sequester more carbon due to their greater biomass, with height and diameter being key factors. Our findings highlight eucalyptus trees as exceptional candidates for carbon storage.

Highest Sequestration:

Eucalyptus (E3C) stored 1569.76 kg of carbon, making it the most efficient species in this study.

Lowest Sequestration:

Oak trees stored the least carbon, with O1A at 10.62 kg and O3C at 10.66 kg, reflecting their slow growth rate.

Species Comparison:

- **Eucalyptus:** Rapid-growing, highest sequestration, dense wood maximizes carbon storage efficiency.
- Cottonwood: Fast-growing, well-suited for urban carbon capture but stores less than eucalyptus.
- **Sycamore:** Moderate sequestration (\$1A: 208.17 kg, \$3C: 58.23 kg), indicating slower accumulation but long-term potential.
- Oak: Slowest-growing, lowest sequestration, but may contribute more over very long timescales.

Sequestration Trends:

Eucalyptus (E3C) sequestered over three times more carbon than the next-highest species (Cottonwood C2B), highlighting its superior efficiency for short to medium-term carbon capture initiatives.

Carbon Sequestration for Eucalyptus Trees at Madrona Marsh

Carbon Sequestration for Oak Trees at Madrona Marsh

Height (ft) Diameter (in) Carbon Sequestered (kg)

Environmental Context and Observations

Preliminary observations suggest that trees located near gas stations and roads may have higher CO₂ exposure (Sites 2B and 3C), potentially increasing their sequestration rates.

Methods

Project took place in Torrance, CA in Los Angeles County (Fig 2)

- Field work duration was from
 October-December (Fall/Winter)
- 3 sites with one of each tree species: sycamore, oak, and cottonwood
- Eucalyptus trees were chosen from scattered areas in marsh (Fig. 1)
 Two key measurements were recorded for
- each selected treeTree Diameter at Breast Height Measured

using a rope and a measuring tape

❖ Tree Height – Measured using a clinometer (Fig. 3)

Carbon Sequestration Formulas

Above Ground Biomass (AGB) = $\frac{1}{4}$ x D² x H Below Ground Biomass (TGB) = $\frac{1}{8}$ × AGB Total Biomass (TB) = AGB + BGB Total Dry Weight (TDW) = TB × 0.725 Total Carbon (TC) = TDW × $\frac{1}{2}$ CO₂ weight = TC × 3.67

Fig 2. Location of Torrance, CA

Fig 3. Using clinometer to measure height

Community Partnership

About Madrona Marsh Nature Preserve:

- Madrona Marsh is a seasonal wetland with vernal pools
- The 43 acres of land were once a former site of oil wells later transformed into a natural landscape
- One of the few natural areas in the South Bay region of LA County remaining

About Miriam Taeubel (Community Partner):

- Instructor II and Research Advisor at Madrona Marsh with a PHD in Environmental Science
- Participated in various professional research papers
- Helps students carry out their research in the field and analyze the data
- Began working together for my project in September of 2024

PRESERVE AND THE PRESER

Madrona Marsh

Miriam and I

Planting an Identification Flag

Conclusion and Next Steps

Overall Takeaways:

- Tree selection for carbon sequestration: Eucalyptus and cottonwood are the best choices for rapid carbon capture.
- Long-term benefits: Oaks sequester less carbon short-term but may store more over centuries.
- Planting trees with greater height and width is crucial for maximizing carbon storage.

Future Plans:

- I will be presenting my findings at the **Madrona Marsh Science Fair** on May 24, 2025
- My research will contribute to helping the marsh plant the particular trees to efficiently combat increasing carbon in the environment

Acknowledgements and References

A very special thank you to the following:

- → Mrs. Miriam Taeubel: Your invaluable mentorship and guidance were pivotal to the success of this project.
- → UConn NRCA: I appreciate your ongoing support and for providing essential materials, including the clinometer, which were crucial for my data collection. I also received a stipend from the CT Urban Forestry Council.
- → Madrona Marsh: A beautiful place, and I am very thankful that I was allowed to conduct my research here with the best people.

References:

<u>Cities and climate change – UN Environment Program</u>